
B. Löwe, G. Winskel (Eds.):
Developments in Computational Models 2012 (DCM 2012)
EPTCS 143, 2014, pp. 54–66, doi:10.4204/EPTCS.143.5

c© A. Kissinger, A. Merry & M. Soloviev

Pattern graph rewrite systems

Aleks Kissinger
Department of Computer Science

University of Oxford, United Kingdom
alexander.kissinger@cs.ox.ac.uk

Alex Merry
Department of Computer Science

University of Oxford, United Kingdom
alex.merry@cs.ox.ac.uk

Matvey Soloviev
Computer Laboratory

University of Cambridge, United Kingdom
ms900@cam.ac.uk

String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor
networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string
graphs, which are a combinatoric representations of string diagrams, amenable to automated rea-
soning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show
how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which
provide a means of expressing infinite families of rewrite rules where certain marked subgraphs,
called !-boxes (“bang boxes”), on both sides of a rule can be copied any number of times or removed.
After reviewing the string graph formalism, we show how string graphs can be extended to pattern
graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs
and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs
and how they can be applied to study interacting algebraic structures that are central to categorical
quantum mechanics.

1 Introduction

String diagrams consist of a collection of boxes representing processes with some inputs and outputs,
and wires, representing the composition of these processes.

α β

γ φ

ρ

They were introduced by Penrose in 1971 to describe (abstract) tensor networks [17], but were later
shown to be a much more general tool for expressing morphisms in arbitrary monoidal categories. Joyal
and Street showed in 1991 that string diagrams could be formalised as topological graphs carrying extra
structure and used to construct free (symmetric, braided, traced, etc.) monoidal categories [12]. As such,
they are a powerful tool for reasoning about algebraic structures internal to monoidal categories, like
those employed by Abramsky and Coecke’s program of categorical quantum mechanics [1, 3, 4, 5].

However, while they provide an intuitive, geometric notion of a composed process, topological
graphs are unwieldy to manipulate by computer program. To solve this problem, Dixon, Duncan and

http://dx.doi.org/10.4204/EPTCS.143.5


A. Kissinger, A. Merry & M. Soloviev 55

Kissinger introduced a discrete version of string diagrams, called string graphs [7]. The key difference
is that “wires”, which in the Joyal and Street construction are represented by copies of the real interval
[0,1], are replaced by chains of special vertices called wire-vertices.

X

X X
7→

X

X

Using string graphs, we can reason about algebraic structures in monoidal categories automatically
using double-pushout graph rewriting [9]. This translation allows many techniques to be imported with
very little change from term rewriting literature into the study of graphical calculi. However, in the
course of applying graph rewrite systems, there are certain circumstances where a finite set of graph
rewrite rules does not suffice. For instance, in [3] the authors focused on the study of how classical data
(in this case, data associated with measurement outcomes) propagates through a quantum system. This
relies crucially on so-called “spiders”. The distinguishing feature they highlighted about classical, as
opposed to quantum, data is that it can be freely created, compared, copied, or deleted. They represent
any combination of these operations as a spider, with a crucial identity, called the spider law, which says
that connected spiders fuse together.

... ...
...

...
...

... ...

spiders (1)

This rule succinctly sums up an infinite family of rules, namely one for every arity of the two spiders
involved. However, the use of ellipses is part of the meta-language, rather than the diagram itself. What
we aim to do is replace this informal notion with diagrammatic syntax. We do this by introducing pattern
graphs. Pattern graphs contain one or more labelled subgraphs called !-boxes. To instantiate a pattern
graph, the contents of its !-boxes (along with any edges in or out) can be copied 0 or more times. So, a
single pattern graph represents an infinite family of concrete graphs.

= · · ·
, , , , , ,b2

b1

If two pattern graphs have coinciding !-boxes, we can form them into pattern rewrite rules. For
instance, the spider law can be reformulated:

b1 b2
b3

b4 b5
b4

b2

b1

b5

b3

This presents (1) in a manner that is machine-readable. Also note that in the process of formulating
this rule, we have removed an ambiguity on the LHS. Namely, we wish to have zero or more wires as
inputs and outputs to the two spiders, yet we need one or more wires connecting the two spiders for the
equation to hold.



56 Pattern graph rewrite systems

Dixon and Duncan have previously [6] introduced a notion of pattern graphs using !-boxes. However,
the underlying graph formalism, which did without (internal) wire-vertices, was ill-behaved with respect
to the interpretation of the graphs as morphisms in a monoidal category. This extended abstract extends
that work in three important ways. Firstly, it formalises the notions of pattern graph, pattern graph
instantiation, and pattern rewriting in the context of string graphs, which were proven in [7] to be sound
and complete with respect to their interpretation as morphisms in monoidal categories. Secondly, it
shows that the latter two operations are sound and consistent with respect to the interpretation of string
graphs as morphisms in a monoidal category. Thirdly, it extends Dixon and Duncan’s origin notion
of a pattern graph by allowing edges to be repeated (via wire-vertices in !-boxes) and it increases the
expressiveness of the language by allowing !-boxes to nest and overlap. This allows the expression of
previously unexpressible equivalences, such as the path-counting rule,

... ... ...

n m n∗m

... ... ...

which can now be formalised as follows:
b2

b1 b2

b1

The rest of the paper is structured as follows. In section 3, we briefly review the category of string
graphs. In section 4, we define pattern graphs and the method by which pattern graphs can be instantiated
to concrete graphs. In section 5, we show how this can be extended to pattern graph rewrite rules and
show how pattern rules can be matched and applied to concrete string graphs. Finally, we conclude and
discuss future work in section 6.

2 Related work

As already mentioned, this work improves upon the specification of !-boxes in [6]. The original inspi-
ration for the term “!-box” in that paper is the “bang” operation from classical linear logic (CLL) intro-
duced by Girard [10]. Its interpretation in that context is a logical expression that can be “consumed”
any number of times in the course of the proof.

Lafont introduced an alternative, and more flexible, 2-dimensional calculus [16]. It does not rely on
symmetry, or on traced or compact structure, but this also makes it harder to work with as these properties
allow us to do genuine graph rewriting.

Researchers at Twente introduced two ways by which richer families of graphs could be matched and
rewritten using something akin to pattern graphs. The first method, initiated by Rensink, uses quantified
graph transformation rules, where subgraphs are attached to a tree of alternating quantifiers [18, 19].
Unlike the transformation rules we consider, this method allows matchings to be non-full on all vertices
in a pattern graph, so an edge in the pattern can be interpreted as an existentially-quantified statement
on the attached subgraph, rather than a requirement that all incident edges must be matched. Rensink
showed that such statements could be generalised to include negations, universals, and nested quantifiers.

The second method takes inspiration from abstraction/refinement-style model checking. Using graph
abstraction [2], large or infinite families of graphs can be represented using coarse-grained abstract
graphs. While this often has the side-effect of producing abstract graphs that match many more graphs



A. Kissinger, A. Merry & M. Soloviev 57

than those of interest, it has the useful property that any high-level properties proven about the abstract
graph hold for any concrete graph it represents.

Both of these methods are implemented on the GROOVE platform, which is a general-purpose graph
rewriting tool geared toward model-checking [11].

3 The category of string graphs

We recall the definition of string graphs, introduced using the name open-graphs in [7].
String diagrams can have wires that are not connected to vertices at one or both ends and wires that

are connected to themselves to form circles. As we mentioned in section 1, we cope with these situations
by replacing wires with chains of special place-holder vertices called wire-vertices. The other type of
vertices in a string graph are called node-vertices, which should be considered the “logical” vertices of a
diagram, and are used to represent some operation, process, or morphism. We now provide some basic
definitions in order to fix graph notation.

Definition 3.1. Let Graph be the category of graphs. It is defined as the functor category [G,Set], for G
defined as:

E V
s

t

E identifies the edges of the graph, and V the vertices. s and t are functions taking an edge to its source
and target respectively.

If t(e) = v then e is called an in-edge of v and if s(e) = v then e is called an out-edge of v. If v′ is the
target of one of the out-edges of v, it is called a successor of v. Similarly, if v′ is the source of one of the
in-edges of v, it is called a predecessor of v. We denote the set of all successors and predecessors for a
given vertex v as succ(v) and pred(v), respectively.

We shall often make use of the graph-theoretic subtraction. For a subgraph H of G, let G\H be the
largest subgraph of G that is disjoint from H.

The typegraph G2 will be used to distinguish node-vertices from wire-vertices.

η ω

Definition 3.2 (SGraph). The category SGraph of string graphs is the full subcategory of the slice
category Graph/G2 induced by the objects where each wire-vertex has at most one in-edge and one
out-edge.

This slice construction allows string graphs to be represented as graphs with a typing morphism
to G2. We refer to a single chain of wire-vertices as a wire. The slice construction also ensures that
every path between two node-vertices must be connected by a wire containing at least one wire-vertex.
This is important both for the concept of matching and for the case where the wire-vertex carries type
information about the wire.

Example 3.3. A diagrammatic presentation of a string graph:



58 Pattern graph rewrite systems

Definitions 3.4 (SGraph Notation). If a wire-vertex has no in-edges, it is called an input. We write
the set of inputs of a string graph G as In(G). Similarly, a wire-vertex with no out-edges is called an
output, and the set of outputs is written Out(G). The inputs and outputs define a string graph’s boundary,
Bound(G) := In(G)+Out(G). If a boundary point has no in-edges and no out-edges, (it is both and
input and output) it is called an isolated point. A string graph consisting of only isolated points is called
a point-graph.

These definitions can be easily extended to handle multiple node-vertex and wire types by using a
richer typegraph. In general, one can turn any monoidal signature T into a typegraph GT and use GT -
typed graphs to construct the free (traced symmetric) monoidal category over the signature T . For details,
see [8] or [13]. However, for the main ideas in the coming sections, it suffices to consider string graphs
with a single node-vertex and wire type.

4 Pattern graphs and instantiation

Before proceeding to the notion of !-boxes, it is useful to first define an open subgraph of a string graph.
Intuitively, these are full subgraphs that contain only complete wires. One way to say this is the graph-
theoretic subtraction does not create any new boundaries.

Definition 4.1. A subgraph O of a string graph G is said to be open if In(G\O)⊆ In(G) and Out(G\O)⊆
Out(G).

We shall shortly define !-boxes as certain kinds of open subgraphs, and note that openness is impor-
tant to preserve the property of being a string graph (i.e., no branching wires) when !-boxes are copied.
The following proposition justifies the use of the topological term “open”.

Proposition 4.2. If O,O′ ⊆G are open subgraphs, and H ⊆G is an arbitrary subgraph, then O∩O′ and
O∪O′ are open in G and H ∩O is open in H.

We encode !-boxes into the graph structure itself, by introducing a third vertex type, called a !-vertex.
The extended typegraph G3 looks like this:

η ω

!

Note that the typegraph enforces that !-vertices can only have out-edges or edges coming from other
!-vertices. For a G3-typed graph (G,τ), we write η(G), ω(G), and !(G) as shorthand for the preimages
τ−1(η), τ−1(ω), and τ−1(!) respectively. We alter the definition of an input slightly from the string-
graph case, due to the new vertex type: a wire-vertex is an input if the only in-edges are from !-vertices.

For a !-vertex b ∈!(G), let B(b) be its associated !-box. This is the full subgraph whose vertices are
the set succ(b) of all of the successors of b. We also define the parent graph of a !-vertex B↑(b) as the
full subgraph of predecessors, that is, the full subgraph generated by pred(b).

Definition 4.3. A G3-typed graph G is called a pattern graph if:

1. the full subgraph with vertices η(G)∪ω(G), denoted Σ(G), is a string graph,

2. the full subgraph with vertices !(G), denoted β (G), is posetal,

3. for all b ∈ !(G), B(b) is an open subgraph of G, and



A. Kissinger, A. Merry & M. Soloviev 59

4. for all b,b′∈ !(G), if b′∈ B(b) then B(b′)⊆ B(b).

Let SPatGraph be the full subcategory of Graph/G3 whose objects are pattern graphs.

Recall that a graph is posetal if it is simple (at most one edge between any two vertices) and, when
considered as a relation, forms a partial order. Note in particular that this implies b ∈ B(b) (and B↑(b)),
by reflexivity. This partial order allows !-boxes to be nested inside each other, provided that the subgraph
defined by a nested !-vertex is totally contained in the subgraph defined by its parent (condition 4).

We extend the Σ(G) and β (G) notation to morphisms of SPatGraph by making their operation be
the obvious restrictions. Thus Σ and β can be viewed as functors on SPatGraph.

Definition 4.4. A pattern graph with no !-vertices is called a concrete graph.

Note that the full subcategory of SPatGraph consisting of concrete graphs is isomorphic to SGraph,
and there is an obvious canonical isomorphism. Concrete graphs and string graphs will therefore be
considered interchangable.

We introduce special notation for pattern graphs. !-vertices are drawn as squares, but rather than
drawing edges to all of the node-vertices and wire-vertices in B(b), we simply draw a box around it.

:=

In this notation, we retain edges between distinct !-vertices to indicate which !-boxes are nested as
opposed to simply overlapping. This distinction is important, as nested !-boxes are copied whenever
their parent is copied.

6=

In particular, every object in SGraph can be considered as a pattern graph that has no !-vertices. This
embedding E : SGraph ↪→ SPatGraph is full and coreflective. Its right adjoint is given by the forgetful
functor U : SPatGraph→ SGraph that drops all of the !-boxes.

4.1 Instantiation

Following the “bang” operation from linear logic, !-boxes admit 4 operations.

COPY

KILL

DROP

MERGE

Definitions 4.5. For G a pattern graph, and b,b′∈ !(G) where B↑(b)\b = B↑(b′)\b′ and B(b)∩B(b′) =
{}, the four !-box operations are defined as follows:



60 Pattern graph rewrite systems

COPYb(G) is defined by a pushout of inclusions in Graph/G3:

G\B(b) G

G COPYb(G)

(2)

DROPb(G) := G\b.

KILLb(G) := G\B(b).

MERGEb,b′(G) is a quotient of G where B↑(b) and B↑(b′) are identified. More explicitly, this is the
coequaliser

B↑(b) G MERGEb,b′(G′)
b̂

b̂′
(3)

in Graph/G3 where b̂ is the normal inclusion map and b̂′ is the inclusion of B↑(b′) into G composed
with the obvious isomorphism from B↑(b) to B↑(b′).

Note that all of these operations preserve the property of being a pattern graph.

Theorem 4.6. Let G be a pattern graph and b∈ !(G). Then the G3-typed graphs COPYb(G), DROPb(G)
and KILLb(G) are all pattern graphs. If we further suppose that b′ ∈ !(G) with B↑(b) \ b = B↑(b′) \ b′

and B(b)∩B(b′) =∅, then MERGEb,b′(G) is also a pattern graph.

Applying one of these four operations any number of times to a pattern graph yields a more specific
pattern. As such, we can define a refinement (pre-)ordering on pattern graphs.

Definition 4.7. For pattern graphs G, H, we let G � H if and only if H can be obtained from G (up to
isomorphism) by applying the four operations from definition 4.5 zero or more times. If H is a concrete
graph, it is called an instance of G, and the sequence of operations used to obtain H from G is called the
instantiation.

4.2 Nested and overlapping !-boxes

Due to the definition of COPY as a pushout of inclusions, the absence of an edge between !-vertices
b1 and b2 with B(b1)∩B(b2) 6= ∅ results in both copies of the contents of b1 created having the same
connectivity to b2 as they had in the original graph:

b1 b1 b′1

COPY
b2 b2

Note that it is not actually necessary that B(b2) \ b2 is completely contained in B(b1) \ b1 here. On
the other hand, if B(b2)\b2 is a subgraph of B(b1)\b1, we could also add an edge from b1 to b2, which
would result in a new copy of b2 being created to contain the copies of the vertices in B(b2).



A. Kissinger, A. Merry & M. Soloviev 61

b1 b1 b′1

COPY
b2 b2 b′2

Definition 4.8. For a pattern graph G with distinct !-vertices b1 and b2, we say b2 is nested in b1 if there
exists a directed edge from b1 to b2. If this is not the case, but B(b1)∩B(b2) 6= ∅, we call b1 and b2
overlapping.

Both of the above examples could be seen as attempts to formalise the family of all trees of height
up to 2. However,

= · · ·, , , , , ,
b2

b1

,

but

= · · ·, , , , ,
b2

b1

,

The absence of nesting restricts the instances to those trees where all the first-level nodes have the same
number of children; in other words, it allows only balanced trees. Removing the nesting enforces a
higher degree of regularity in the concrete graphs that can be expressed.

Nesting, in fact, always makes a pattern graph more general in the following sense:
Proposition 4.9. Let G be a pattern graph and b2 be nested in b1 in G, with the edge from b1 to b2 being
e. Then the set of instances of the graph H = G\ e is a subset of the set of instances of G.

This becomes evident when we observe that we can track operations on H in G by performing a
MERGEb2,b′2

on the two copies of b2 produced whenever b1 or a copy of it is copied (and performing the
same operation otherwise), producing the same pattern graph apart from additional copies of e, which
must eventually be dropped to obtain a concrete graph.

5 Matching and rewriting with pattern graphs

For those familiar with patterns in functional programming languages, the name “pattern graph” suggests
that there should be a concept of matching, and given a pattern graph and a string graph, it should be
possible to determine whether the string graph is matched by the pattern graph. This is, in fact, the case.
First, we recall how matching between string graphs is defined.
Definition 5.1. A monomorphism, m : G→ H, of string graphs is called a string graph matching when,
for every node-vertex n ∈ η(G), the edge function of m restricts to a bijection between the set of edges
connected to n in G and the set of edges connected to m(n) in H. In this case, G is said to match H at m.

The concept of a matching from a pattern graph to a string graph is straightforward: if there is an
instance of the pattern graph that matches the string graph, then the pattern graph is said to match the
string graph.



62 Pattern graph rewrite systems

Definition 5.2. Let P be a pattern graph, and H a string graph. If there is an instance G of P, with
instantiation S, that matches H at a morphism m, P is said to match H at m under instantiation S.

Determining whether such an m and S exist, and what possible values they can take, is decidable,
although we do not have space to show that here. The full details are set out in a document in the
Quantomatic1 repository.

Given a concept of matching, we can proceed to define how to do rewriting of string graphs using
rules built from pattern graphs. We start by recalling how rewriting of string graphs using string graph
rewrite rules works.

Definition 5.3 (Rewrite Rule). A span of string graphs L i1←− I i2−→ R is called a rewrite rule, written
L R, if

1. I is a point graph and i1 restricts to a bijection I ∼= Bound(L) and i2 to I ∼= Bound(R) and

2. for all p ∈ I, i1(p) ∈ In(L)⇔ i2(p) ∈ In(R) and i1(p) ∈ Out(L)⇔ i2(p) ∈ Out(R)

In other words, L and R share the same boundary.

For a pair of morphisms I i1−→ L m−→G, a pushout complement is some string graph G−m L complet-
ing the pushout square:

I L

G−m L G

(4)

Theorem 5.4 (Dixon-Kissinger [8]). For a rewrite rule L R and a matching m : L→ G, the pushout
complement (4) exists and is unique.

Rewriting is performed via the double-pushout (DPO) technique. First, the pushout complement is
computed, to remove the LHS of a rewrite rule, then the RHS is “glued in” with a second pushout. The
rewrite rule is said to rewrite G to G′ (also written G G′, when there is no ambiguity) at a matching
m : L→ G, when G′ is defined according to the following DPO diagram:

L I R

G G−m L G′

i1 i2

m

Definition 5.5. A rewrite pattern is a span of pattern graphs L i1←− I i2−→ R where

1. Σ(I) is a point graph;

2. L and R share the same boundary via Σ(i1) and Σ(i2);

3. β (i1) and β (i2) are graph isomorphisms; and

4. for each b ∈ !(I), the preimage of B(i1(b)) under i1 is exactly B(b), and similarly for the preimage
of B(i2(b)) under i2.

1http://sites.google.com/site/quantomatic

http://sites.google.com/site/quantomatic


A. Kissinger, A. Merry & M. Soloviev 63

Note that the first two conditions ensure that simply applying the forgetful functor U : SPatGraph→
SGraph to this span yields a rewrite rule, as defined above.

Since our concept of matching involves applying !-box operations to the pattern graph, we need to
extend the !-box operations to rewrite patterns. The rule is that any operation performed on a !-box in L
must also be performed on the equivalent !-box (determined by the bijection induced by i1 and i2) in R.

Lemma 5.6. If L i1←− I i2−→ R is a rewrite pattern then, for all b ∈ !(I), the image of I \B(b) under i1 is
contained in L\B(i1(b)), and similarly for i2 and R\B(i2(b)).

Definition 5.7. Let L R be a rewrite pattern defined by the span L i1←− I i2−→ R. Let b,b′ ∈!(I) be
mergable !-vertices such that the pairs of !-boxes defined by i1(b), i1(b′) ∈ L and i2(b), i2(b′) ∈ R can
also be merged. The four !-box operations on pattern graphs have the following equivalents on rewrite
patterns:

PCOPYb(L R) is defined by:

COPYi1(b)(L)
i′1←− COPYb(I)

i′2−→ COPYi2(b)(R)

For COPYb(I) and COPYi1(b)(L) defined by pushouts:

I \B(b) I

I COPYb(I)

ι

pI
1

ι pI
2

L\B(i1(b)) L

L COPYi1(b)(L)pL
1

pL
2

the maps pL
1 and pL

2 agree on L \B(i1(b)). From lemma 5.6, we can deduce that pL
1 ◦ i1 ◦ ι =

pL
2 ◦ i1 ◦ ι . We then define i′1 as the map induced by the pushout along I \B(b).

I \B(b) I

I COPYb(I) L

L COPYi1(b)(L)

ι

ι

i1

i′1

i1

pL
1

pL
2

(5)

i′2 is defined similarly.

PDROPb(L R) is defined by the span:

DROPi1(b)(L)
i′1←− DROPb(I)

i′2−→ DROPi2(b)(R)

where i′1 and i′2 are the restrictions of i1 and i2 to DROPb(I).



64 Pattern graph rewrite systems

PKILLb(L R) is defined similarly:

KILLi1(b)(L)
i′1←− KILLb(I)

i′2−→ KILLi2(b)(R)

where i′1 and i′2 are again restrictions of i1 and i2.

PMERGEb,b′(L R) is a span:

MERGEi1(b),i1(b′)(L)
i′1←−MERGEb,b′(I)

i′2−→MERGEi2(b),i2(b′)(R)

The maps i′1 and i′2 are induced by the coequaliser of b̂ and b̂′.

B↑(b)

L I R

MERGEi1(b),i1(b′)(L) MERGEb,b′(I) MERGEi2(b),i2(b′)(R)

b̂ b̂′
i1 i2

i′1 i′2

Theorem 5.8. Let L R be a rewrite pattern. Then applying any of the rewrite !-box operations yields
another rewrite pattern.

From this result and the definition of rewrite !-box operations above, we can see that, given matching
of L against a string graph G at m under instantiation S, applying the equivalent instantiation sequence
to the rewrite pattern L R will produce a rewrite rule that can be used to rewrite G to another string
graph H. In this way, a single rewrite pattern can take the place of an infinite family of rewrite rules.

6 Conclusions and future work

We have presented a construction for expressing graphs with a certain form of repetitive structure, as
might be informally expressed with ellipses. This pattern graph construction has been made in the
language of typed graphs, allowing the application of familiar techniques for reasoning about graphs.
We have demonstrated how it can be used to express rules that appear in graphical calculi for quantum
information processing.

We have also demonstrated how pattern graphs can be used to rewrite string graphs, and hence how
they allow infinitary families of rules to be used when reasoning mechanically about string diagrams.

We already have a piece of software, Quantomatic2, that implements a restricted version of pattern
graphs, and we are currently extending it to leverage nested and overlapping !-boxes. The naı̈ve algorithm
for matching is quite inefficient, and there should be some gains to be made by making use of the inherent
graph symmetries that arise from copying !-boxes.

An obvious next step is to explore how pattern graphs can be rewritten directly using rewrite patterns,
which would allow us to reason by rewriting about infinite families of graphs simultaneously. In partic-
ular, the notions of pattern graph matching and unification could be applied to perform Knuth-Bendix

2http://sites.google.com/site/quantomatic

http://sites.google.com/site/quantomatic


A. Kissinger, A. Merry & M. Soloviev 65

completion [15], which could be used in combination with rules generated by other automated means
(e.g., conjecture synthesis [14]) to generate new pattern graph rewrite rules [13].

Another way this work can be extended is to develop ways to express richer families of string graphs.
Pattern graphs can be thought of as something akin to regular expressions, sans alternation. What sorts
of families can we express using analogues to full regular, context-free, or recursive languages? For
example, could such a language effectively represent things like chains of unbounded length?

, , , . . .,

Another question one might ask is how pattern graphs can be applied to study more general graph
rewriting problems, rather than just rewriting for string graphs. In this case, many of the concepts of this
paper, with the exception of “open subgraphs”, translate straightforwardly to arbitrary typed graphs.

References

[1] Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: 19th IEEE
Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings,
IEEE Computer Society, pp. 415–425, doi:10.1109/LICS.2004.1319636.

[2] Iovka B. Boneva, Arend Rensink, Marcos E. Kurbán & Jörg Bauer (2007): Graph Abstraction and Abstract
Graph Transformation. Available at http://doc.utwente.nl/64257/. Technical Report, Universiteit
Twente.

[3] Bob Coecke & Ross Duncan (2008): Interacting quantum observables. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús Halldórson, Anna Ingólfsdottir & Igor Wałukiewicz, editors: Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II–Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, Lecture Notes in Computer Science 5126, Springer Verlag, pp. 298–310,
doi:10.1007/978-3-540-70583-3 25.

[4] Bob Coecke & Aleks Kissinger (2010): The compositional structure of multipartite quantum entanglement.
In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide & Paul G. Spirakis,
editors: Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux,
France, July 6-10, 2010, Proceedings, Part II, Lecture Notes in Computer Science 6199, Springer Verlag, pp.
297–308, doi:10.1007/978-3-642-14162-1 25.

[5] Bob Coecke, Simon Perdrix & Éric Oliver Paquette (2008): Bases in Diagrammatic Quantum Protocols.
Electronic Notes in Theoretical Computer Science 218, pp. 131–152, doi:10.1016/j.entcs.2008.10.009.

[6] Lucas Dixon & Ross Duncan (2009): Graphical reasoning in compact closed categories for quantum com-
putation. Annals of Mathematics and Artificial Intelligence 56, pp. 23–42, doi:10.1007/s10472-009-9141-x.

[7] Lucas Dixon, Ross Duncan & Aleks Kissinger (2010): Open Graphs and Computational Reasoning. In
S. Barry Cooper, Prakash Panangaden & Elham Kashefi, editors: Proceedings Sixth Workshop on Develop-
ments in Computational Models: Causality, Computation, and Physics, Electronic Proceedings in Theoretical
Computer Science 26, pp. 169–180, doi:10.4204/EPTCS.26.16.

[8] Lucas Dixon & Aleks Kissinger (2010): Open Graphs and Monoidal Theories. Computing Research Repos-
itory abs/1011.4114. Available at http://arxiv.org/abs/1011.4114.

[9] Hartmut Ehrig, Michael Pfender & Hans Jürgen Schneider (1973): Graph-Grammars: An Algebraic Ap-
proach. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October
15-17, 1973, IEEE Computer Society, pp. 167–180, doi:10.1109/SWAT.1973.11.

http://dx.doi.org/10.1109/LICS.2004.1319636
http://doc.utwente.nl/64257/
http://dx.doi.org/10.1007/978-3-540-70583-3_25
http://dx.doi.org/10.1007/978-3-642-14162-1_25
http://dx.doi.org/10.1016/j.entcs.2008.10.009
http://dx.doi.org/10.1007/s10472-009-9141-x
http://dx.doi.org/10.4204/EPTCS.26.16
http://arxiv.org/abs/1011.4114
http://dx.doi.org/10.1109/SWAT.1973.11


66 Pattern graph rewrite systems

[10] J.-Y. Girard (1987): Linear Logic. Theoretical Computer Science 50(1), pp. 1–101, doi:10.1016/0304-
3975(87)90045-4.

[11] The GROOVE Project. Available at http://groove.cs.utwente.nl/.
[12] André Joyal & Ross Street (1991): The geometry of tensor calculus. I. Advances in Mathematics 88(1), pp.

55–112, doi:10.1016/0001-8708(91)90003-P.
[13] Aleks Kissinger (2012): Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and

Applications to Quantum Computing. Ph.D. thesis, University of Oxford.
[14] Aleks Kissinger (2012): Synthesising Graphical Theories. Computing Research Repository abs/1202.6079.

Available at http://arxiv.org/abs/1202.6079.
[15] Donald E. Knuth & Peter B. Bendix (1970): Simple word problems in universal algebras. In John Leech,

editor: Computational problems in abstract algebra. Proceedings of a Conference held at Oxford under the
auspices of the Science Research Council, Atlas Computer Laboratory, 29th August to 2nd September 1967,
Pergamon Press, pp. 263–297.

[16] Y. Lafont (1995): Equational reasoning with 2-dimensional diagrams. In Hubert Comon & Jean-Pierre
Jouannaud, editors: Term Rewriting, French Spring School of Theoretical Computer Science, Font Romeux,
France, May 17-21, 1993, Advanced Course, Lecture Notes in Computer Science 909, Springer Verlag, pp.
170–195, doi:10.1007/3-540-59340-3 13.

[17] Roger Penrose (1971): Applications of negative dimensional tensors. In: Combinatorial mathematics and
its applications. Proceedings of a Conference held at the Mathematical Institute, Oxford, from 7-10 July,
Academic Press, pp. 221–244.

[18] Arend Rensink (2006): Nested Quantification in Graph Transformation Rules. In Andrea Corradini, Hartmut
Ehrig, Ugo Montanari, Leila Ribeiro & Grzegorz Rozenberg, editors: Graph Transformations, Third Inter-
national Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, September 17-23, 2006, Proceedings,
Lecture Notes in Computer Science 4178, Springer Verlag, pp. 1–13, doi:10.1007/11841883 1.

[19] Arend Rensink & Jan-Hendrik Kuperus (2009): Repotting the Geraniums: On Nested Graph Transformation
Rules. Electronic Communications of the European Association of Software Science and Technology 18.

http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://groove.cs.utwente.nl/
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://arxiv.org/abs/1202.6079
http://dx.doi.org/10.1007/3-540-59340-3_13
http://dx.doi.org/10.1007/11841883_1

	1 Introduction
	2 Related work
	3 The category of string graphs
	4 Pattern graphs and instantiation
	4.1 Instantiation
	4.2 Nested and overlapping !-boxes

	5 Matching and rewriting with pattern graphs
	6 Conclusions and future work

